Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Med Virol ; 95(5): e28796, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2321936

RESUMEN

Host proteases trypsin and trypsin-like proteases have been reported to facilitate the entry of coronavirus SARS-CoV-2 in its host cells. These protease enzymes cleave the viral surface glycoprotein, spike, leading to successful cell surface receptor attachment, fusion and entry of the virus in its host cell. The spike protein has protease cleavage sites between the two domains S1 and S2. Since the cleavage site is recognized by the host proteases, it can be a potential antiviral therapeutic target. Trypsin-like proteases play an important role in virus infectivity and the property of spike protein cleavage by trypsin and trypsin-like proteases can be used to design assays for screening of antiviral candidates against spike protein cleavage. Here, we have documented the development of a proof-of-concept assay system for screening drugs against trypsin/trypsin-like proteases that cleave spike protein between its S1 and S2 domains. The assay system developed uses a fusion substrate protein containing a NanoLuc luciferase reporter protein, the protease cleavage site between S1 and S2 domains of SARS-CoV-2 spike protein and a cellulose binding domain. The substrate protein can be immobilized on cellulose via the cellulose binding domain of the substrate. When trypsin and trypsin-like proteases cleave the substrate, the cellulose binding domain remain bound to the cellulose and the reporter protein is dislodged. Reporter assay using the released reporter protein is the read out of the protease activity. We have demonstrated the proof-of-concept using multiple proteases like trypsin, TMPRSS2, furin, cathepsin B, human airway trypsin and cathepsin L. A significant increment in fold change was observed with increasing enzyme concentration and incubation time. Introduction of increasing amounts of enzyme inhibitors in the reaction reduced the luminescent signal, thus validating the assay. Furthermore, we used SDS-PAGE and immunoblot analyses to study the cleavage band pattern and re-confirm the cleavage for enzymes tested in the assay. Taken together, we have tested an in-vitro assay system using the proposed substrate for screening drugs against trypsin like protease-based cleavage of SARS-CoV-2 spike glycoprotein. The assay system can also be potentially used for antiviral drug screening against any other enzyme that might cleave the used cleavage site.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tripsina , Internalización del Virus , SARS-CoV-2/metabolismo , Péptido Hidrolasas
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2039869

RESUMEN

Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor (GPCR) activated by proteolytic cleavage of its N-terminal domain. Once activated, PAR2 is rapidly desensitized and internalized by phosphorylation and ß-arrestin recruitment. Due to its irreversible activation mechanism, some agonists that rapidly desensitized PAR2 have been misconceived as antagonists, and this has impeded a better understanding of the pathophysiological role of PAR2. In the present study, we found that GB83, initially identified as a PAR2 antagonist, is a bona fide agonist of PAR2 that induces unique cellular signaling, distinct from trypsin and PAR2-activating peptide (AP). Activation of PAR2 by GB83 markedly elicited an increase in intracellular calcium levels and phosphorylation of MAPKs, but in a delayed and sustained manner compared to the rapid and transient signals induced by trypsin and PAR2-AP. Interestingly, unlike PAR2-AP, GB83 and trypsin induced sustained receptor endocytosis and PAR2 colocalization with ß-arrestin. Moreover, the recovery of the localization and function of PAR2 was significantly delayed after stimulation by GB83, which may be the reason why GB83 is recognized as an antagonist of PAR2. Our results revealed that GB83 is a bona fide agonist of PAR2 that uniquely modulates PAR2-mediated cellular signaling and is a useful pharmacological tool for studying the pathophysiological role of PAR2.


Asunto(s)
Calcio , Receptor PAR-2 , Calcio/metabolismo , Péptidos , Receptor PAR-2/metabolismo , Tripsina , beta-Arrestinas
5.
Nature ; 609(7927): 582-589, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2016756

RESUMEN

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Asunto(s)
Microbioma Gastrointestinal , Intestino Grueso , Simbiosis , Tripsina , Administración Oral , Animales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , COVID-19/complicaciones , Citrobacter rodentium/inmunología , Diarrea/complicaciones , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Proteolisis , SARS-CoV-2/patogenicidad , Tripsina/metabolismo , Internalización del Virus
6.
Cells ; 11(11)2022 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1924204

RESUMEN

Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Humanos , Péptidos/metabolismo , SARS-CoV-2 , Tripsina/metabolismo
7.
Hum Genet ; 141(11): 1705-1722, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1669806

RESUMEN

Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host-pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.


Asunto(s)
COVID-19 , Serina Proteasas , Animales , Humanos , Hierro , Mamíferos , Proteínas de la Membrana/genética , SARS-CoV-2/genética , Serina Proteasas/genética , Tripsina
8.
Arch Virol ; 167(2): 441-458, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1653520

RESUMEN

Coronaviruses infect cells by cytoplasmic or endosomal membrane fusion, driven by the spike (S) protein, which must be primed by proteolytic cleavage at the S1/S2 furin cleavage site (FCS) and the S2' site by cellular proteases. Exogenous trypsin as a medium additive facilitates isolation and propagation of several coronaviruses in vitro. Here, we show that trypsin enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in cultured cells and that SARS-CoV-2 enters cells via either a non-endosomal or an endosomal fusion pathway, depending on the presence of trypsin. Interestingly, trypsin enabled viral entry at the cell surface and led to more efficient infection than trypsin-independent endosomal entry, suggesting that trypsin production in the target organs may trigger a high level of replication of SARS-CoV-2 and cause severe tissue injury. Extensive syncytium formation and enhanced growth kinetics were observed only in the presence of exogenous trypsin when cell-adapted SARS-CoV-2 strains were tested. During 50 serial passages without the addition of trypsin, a specific R685S mutation occurred in the S1/S2 FCS (681PRRAR685) that was completely conserved but accompanied by several mutations in the S2 fusion subunit in the presence of trypsin. These findings demonstrate that the S1/S2 FCS is essential for proteolytic priming of the S protein and fusion activity for SARS-CoV-2 entry but not for viral replication. Our data can potentially contribute to the improvement of SARS-CoV-2 production for the development of vaccines or antivirals and motivate further investigations into the explicit functions of cell-adaptation-related genetic drift in SARS-CoV-2 pathogenesis.


Asunto(s)
COVID-19 , Internalización del Virus , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Tripsina
9.
Viruses ; 13(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1555020

RESUMEN

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV-host interactions and provides new strategies to control PDCoV infection.


Asunto(s)
Deltacoronavirus/fisiología , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , Tripsina/metabolismo , Acoplamiento Viral , Animales , Carbohidratos , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus/efectos de los fármacos , Interacciones Huésped-Patógeno , Intestinos/metabolismo , Intestinos/virología , Ácido Peryódico/farmacología , Porcinos , Enfermedades de los Porcinos/virología , Tripsina/farmacología
10.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1389398

RESUMEN

Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.


Asunto(s)
COVID-19/enzimología , Enfermedades Pulmonares Obstructivas/enzimología , SARS-CoV-2/metabolismo , Tripsina/metabolismo , Animales , COVID-19/patología , Canales Epiteliales de Sodio/metabolismo , Humanos , Enfermedades Pulmonares Obstructivas/patología , Receptor PAR-2/metabolismo
11.
J Biol Chem ; 295(36): 12686-12696, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1387615

RESUMEN

Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Serina Proteasas/metabolismo , Células A549 , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Dominios Proteicos , Transporte de Proteínas , Mucosa Respiratoria/citología , Serina Proteasas/química , Serina Proteasas/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tripsina/metabolismo
13.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1352543

RESUMEN

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Asunto(s)
COVID-19/inmunología , Células Epiteliales/inmunología , Inmunidad Innata , Pulmón/inmunología , SARS-CoV-2/aislamiento & purificación , Replicación Viral/fisiología , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Citocinas/genética , Células Epiteliales/virología , Expresión Génica , Humanos , Interferón Tipo I/genética , Interferones/genética , Cinética , Pulmón/virología , Filogenia , ARN Viral , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Tripsina , Interferón lambda
14.
Biosci Rep ; 41(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1334001

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet-poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to ß and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.


Asunto(s)
COVID-19/patología , Fibrina/metabolismo , Fibrinólisis/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/patología , Adulto , Anciano , Amiloide/metabolismo , Plaquetas/metabolismo , Complemento C3/metabolismo , Femenino , Fibrinógeno/metabolismo , Humanos , Pulmón/patología , Masculino , Técnicas Analíticas Microfluídicas , Persona de Mediana Edad , Protrombina/metabolismo , SARS-CoV-2/metabolismo , Trombosis/virología , Tripsina/metabolismo
15.
Int J Environ Res Public Health ; 18(10)2021 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1328101

RESUMEN

BACKGROUND: nasal or oral sprays are often marketed as medical devices (MDs) in the European Union to prevent common cold (CC), with ColdZyme®/Viruprotect® (trypsin/glycerol) mouth spray claiming to prevent colds and the COVID-19 virus from infecting host cells and to shorten/reduce CC symptoms as an example. We analyzed the published (pre)-clinical evidence. METHODS: preclinical: comparison of in vitro tests with validated host cell models to determine viral infectivity. Clinical: efficacy, proportion of users protected against virus (compared with non-users) and safety associated with trypsin/glycerol. RESULTS: preclinical data showed that exogenous trypsin enhances SARS-CoV-2 infectivity and syncytia formation in host models, while culture passages in trypsin presence induce spike protein mutants. The manufacturer claims >98% SARS-CoV-2 deactivation, although clinically irrelevant as based on a tryptic viral digest, inserting trypsin inactivation before host cells exposure. Efficacy and safety were not adequately addressed in clinical studies or leaflets (no COVID-19 data). Protection was obtained among 9-39% of users, comparable to or lower than placebo-treated or non-users. Several potential safety risks (tissue digestion, bronchoconstriction) were identified. CONCLUSIONS: the current European MD regulations may result in insufficient exploration of (pre)clinical proof of action. Exogenous trypsin exposure even raises concerns (higher SARS-CoV-2 infectivity, mutations), whereas its clinical protective performance against respiratory viruses as published remains poor and substandard.


Asunto(s)
COVID-19 , Resfriado Común , Unión Europea , Humanos , Legislación de Dispositivos Médicos , Mutación , Vaporizadores Orales , SARS-CoV-2 , Tripsina
16.
Biochimie ; 185: 87-95, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1306866

RESUMEN

One of the main functions of alpha-2-macroglobulin (A2M) in human blood serum is the binding of all classes of protease. It is known that trypsin, after such interaction, possesses modified proteolytic activity. Trypsin first hydrolyzes two bonds in A2M's 'bait region', and the peptide 705VGFYESDVMGR715 is released from A2M. In this work, specifics of the A2M-trypsin interaction were used to determine A2M concentration directly in human blood serum using MALDI mass-spectrometry. Following exogenous addition of trypsin to human blood serum in vitro, the concentration of the VGFYESDVMGR peptide was measured, using its isotopically-labeled analogue (18O), and A2M concentration was calculated. The optimized mass spectrometric approach was verified using a standard method for A2M concentration determination (ELISA) and the relevant statistical analysis methods. It was also shown that trypsin's modified proteolytic activity in the presence of serum A2M can be used to analyze other serum proteins, including potential biomarkers of pathological processes. Thus, this work describes a promising approach to serum biomarker analysis that can be technically extended in several useful directions.


Asunto(s)
Péptidos/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/sangre , Biomarcadores/sangre , Humanos , alfa-Macroglobulinas
17.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1240259

RESUMEN

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Asunto(s)
COVID-19/virología , Transdiferenciación Celular , Células Secretoras de Insulina/virología , SARS-CoV-2/patogenicidad , Acetamidas/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , COVID-19/mortalidad , Transdiferenciación Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclohexilaminas/farmacología , Citocinas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Glucagón , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Fenotipo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Tripsina/metabolismo , Células Vero , Adulto Joven
18.
J Med Virol ; 93(3): 1792-1795, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1196499

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic calls for effective and safe treatments. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 actively replicates in the throat, unlike SARS-CoV, and shows high pharyngeal viral shedding even in patients with mild symptoms of the disease. HCoV-229E is one of four coronaviruses causing the common cold. In this study, the efficacy of ColdZyme® (CZ-MD), a medical device mouth spray, was tested against SARS-CoV-2 and HCoV-229E in vitro. The CZ-MD provides a protective glycerol barrier containing cod trypsin as an ancillary component. Combined, these ingredients can inactivate common cold viruses in the throat and mouth. The CZ-MD is believed to act on the viral surface proteins that would perturb their entry pathway into cells. The efficacy and safety of the CZ-MD have been demonstrated in clinical trials on the common cold. METHOD OF STUDY: The ability of the CZ-MD to inactivate SARS-CoV-2 and HCoV-229E was tested using an in vitro virucidal suspension test (ASTM E1052). RESULTS: CZ-MD inactivated SARS-CoV-2 by 98.3% and HCoV-229E by 99.9%. CONCLUSION: CZ-MD mouth spray can inactivate the respiratory coronaviruses SARS-CoV-2 and HCoV-229E in vitro. Although the in vitro results presented cannot be directly translated into clinical efficacy, the study indicates that CZ-MD might offer a protective barrier against SARS-CoV-2 and a decreased risk of COVID-19 transmission.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Glicerol/farmacología , SARS-CoV-2/efectos de los fármacos , Tripsina/farmacología , Inactivación de Virus/efectos de los fármacos , COVID-19/prevención & control , COVID-19/transmisión , Resfriado Común/tratamiento farmacológico , Resfriado Común/prevención & control , Resfriado Común/transmisión , Desinfectantes/farmacología , Humanos , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
19.
Virus Res ; 299: 198423, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1180097

RESUMEN

The SARS coronavirus (SARS-CoV) has the potential to cause serious disease that can spread rapidly around the world. Much of our understanding of SARS-CoV pathogenesis comes from in vitro experiments. Unfortunately, in vitro experiments cannot replicate all the complexity of the in vivo infection. For example, proteases in the respiratory tract cleave the SARS-CoV surface protein to facilitate viral entry, but these proteases are not present in vitro. Unfortunately, proteases might also have an effect on other parts of the replication cycle. Here, we use mathematical modeling to estimate parameters characterizing viral replication for SARS-CoV in the presence of trypsin or elastase, and in the absence of either. In addition to increasing the infection rate, the addition of trypsin and elastase causes lengthening of the eclipse phase duration and the infectious cell lifespan.


Asunto(s)
Elastasa Pancreática/farmacología , SARS-CoV-2/efectos de los fármacos , Tripsina/farmacología , Animales , COVID-19/virología , Chlorocebus aethiops , Modelos Teóricos , SARS-CoV-2/fisiología , Células Vero , Carga Viral , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
20.
Int J Biol Macromol ; 179: 601-609, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1131358

RESUMEN

Proteinases with the (chymo)trypsin-like serine/cysteine fold comprise a large superfamily performing their function through the Acid - Base - Nucleophile catalytic triad. In our previous work (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411), we described a universal three-dimensional (3D) structural motif, NBCZone, that contains eleven amino acids: dipeptide 42 T-43 T, pentapeptide 54 T-55 T-56 T-57 T(base)-58 T, tripeptide 195 T(nucleophile)-196 T-197 T and residue 213 T (T - numeration of amino acids in trypsin). The comparison of the NBCZones among the members of the (chymo)trypsin-like protease family suggested the existence of 15 distinct groups. Within each group, the NBCZones incorporate an identical set of conserved interactions and bonds. In the present work, the structural environment of the catalytic acid at the position 102 T and the fourth member of the "catalytic tetrad" at the position 214 T was analyzed in 169 3D structures of proteinases with the (chymo)trypsin-like serine/cysteine fold. We have identified a complete Structural Catalytic Core (SCC) consisting of two classes and four groups. The proteinases belonging to different classes and groups differ from each other by the nature of the interaction between their N- and C-terminal ß-barrels. Comparative analysis of the 3CLpro(s) from SARS-CoV-2 and SARS-CoV, used as an example, showed that the amino acids at positions 103 T and 179 T affect the nature of the interaction of the "catalytic acid" core (102 T-Core, N-terminal ß-barrel) with the "supplementary" core (S-Core, C-terminal ß-barrel), which ultimately results in the modulation of the enzymatic activity. The reported analysis represents an important standalone contribution to the analysis and systematization of the 3D structures of (chymo)trypsin-like serine/cysteine fold proteinases. The use of the developed approach for the comparison of 3D structures will allow, in the event of the appearance of new representatives of a given fold in the PDB, to quickly determine their structural homologues with the identification of possible differences.


Asunto(s)
Proteasas de Cisteína/química , Serina Proteasas/química , Secuencia de Aminoácidos , Sitios de Unión , COVID-19/metabolismo , Catálisis , Dominio Catalítico , Proteasas de Cisteína/metabolismo , Humanos , Modelos Moleculares , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA